Oxford Cambridge and RSA

GCE

Mathematics

Unit 4736: Decision Mathematics 1
Advanced Subsidiary GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation in scoris	
BP	Meaning (structured or unstructured) and on each page of an additional object where there is no candidate response.
Vand \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

2. Here are the subject specific instructions for this question paper

Annotations should be used whenever appropriate during your marking
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question			Answer	Marks	Guidance
2	(i)	(a)	or It has exactly 2 nodes of odd order	M1 M1 ft A1 [3]	Any graph that is topologically equivalent to this (the complete graph on 4 vertices with one arc removed) Follow through their graph for 'Eulerian', 'semi-Eulerian' or 'neither' (must have a graph) Allow ' 2 odd and 2 even' but not just ' 2 odd nodes', 'nodes have order 2, 2, 3, 3', etc. A mark is from correct graph only, dependent on both M marks
2	(i)	(b)	The sum of the vertex orders $=2 \times$ number of arcs $=10$	B1	10 (seen, but not from wrong working; or implied, e.g. from 2×5 or $3,3,2,2$ or perhaps $4,3,2,1$ or any set of four positive integers that sum to 10)
			(Simply connected, so each vertex order must be 1,2 or 3) $3+3+3+1$ (In a simple graph) a vertex of order 3 must connect to three other vertices. (There are only four vertices, so) each vertex of order 3 needs to connect to each of the others. This means that it is not possible to have three vertices of order 3	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Note: use of Euler's relation $\mathrm{R}+\mathrm{N}=\mathrm{A}+2$ gets no credit $3,3,3,1$ seen (numerically or in words) Explaining why three vertices of order 3 is not possible Allow ' $3,3,3$, 1 would have to repeat an arc, so graph is not simple' (not just a diagram)
			$3+3+2+2$ There is only one way to make $3,3,2,2$ since the vertices of order 2 cannot be connected to one another or it is the complete graph $\left(K_{4}\right)$ with one arc removed	M1 A1 [5]	$3,3,2,2$ seen (numerically or in words) Convincingly explaining why there is only one way to make $3,3,2$, 2 (not just a diagram)
2	(ii)		Graphs drawn that are topologically equivalent to the following	M1 A1 A1 [3]	Any one distinct and correct graph Another two distinct and correct graphs (to make three) Another two distinct and correct graphs (to make all five) Each graph must be simply connected and have 5 vertices and 5 arcs, ignore any extras or duplicates. Only credit each distinct type once.

Question			Answer						Marks	Guidance
3	(i)								M1	If candidate has used table differently try to follow their layout (e.g. written out all values, or squashed a pass into one line) $\sqrt{499}$ or 22.34 (allow 22.3 or better) Initial values for C, X, Y correct (condone $N=500$ missing)
			Line	N	C	X	Y	Print		
			10	500						
			20		1					
			40			$\sqrt{499}$				
			50				22			
			80		2					
			40			$\sqrt{496}$				$\sqrt{496}$ or $2 \sqrt{ } 124$ or $4 \sqrt{ } 31 \quad \sqrt{496}$ or 22.27 (allow 22.3 or better)
			50				22		$\begin{aligned} & \text { M1 } \\ & \text { dep } \end{aligned}$	Second pass correct (values of $C, X, Y)(Y=22$ may be implied)
			80		3					This mark is dependent on the previous M mark
			40			$\sqrt{491}$				$\sqrt{491}$ or 22.16 (allow 22.2 or better)
			50				22		$\begin{aligned} & \text { M1 } \\ & \text { dep } \end{aligned}$	Third pass correct (values of $C, X, Y)(Y=22$ may be implied)
			80		4					This mark is dependent on the previous M marks
			40			22			A1	
			50				22			Output 4, 22 (or $\sqrt{484}$) in print column (without any wrong
			100					4,22		working or extra passes in C, X, Y columns). Ignore letters, if given. Accept 22, 4
									[4]	
3	(ii)								M1	If candidate has used table differently try to follow their layout $\sqrt{6}$ or 2.45 (allow 2.4 or 2.5 or better) Initial values for C, X, Y correct (condone $N=7$ missing)
			Line	N	C	X	Y	Print		
			10	7						
			20		1					
			40			$\sqrt{6}$				
			50				2			
			80		2					
			40			$\sqrt{3}$				$\sqrt{3}$ or 1.73 (allow 1.7 or better)
			50				1		A1	Second pass correct, and no further passes (no further working
			110					FAIL		in C, X, Y columns, e.g. $C=3 \Rightarrow \mathrm{~A} 0)$
									[2]	

Question		Answer	Marks	Guidance
4	(ii)	$\begin{aligned} & \text { Odd nodes: } A \text { and } G \\ & \text { Shortest route } A \text { to } G=800 \text { metres } \\ & \text { Length of shortest route }=4200+800 \\ & \qquad \end{aligned}$	B1 M1 A1 ft [3]	Identifying A and G as only odd nodes (must be seen, not implied). Could have $A=3, B=4$, etc., provided $A=3, G=3$ are the only odd nodes. (Note: $A G=8$ is not enough) $4200+$ their 800 (or $42+$ their 8$)(4200+$ their distance $A G)$ (may be implied from their answer) 5000, condone 50 if arc weights used throughout this part (units may be implied) (correct or ft)
4	(iii)	$A C B E F H$	B1 [1]	Allow $A C, C B, \ldots, F H$ or similar, but must be correct route Must be written, not a diagram
4	(iv)	Zac will finish searching for clues at $G=4200 \mathrm{~m}$ Shortest route from G to H is $G H=100 \mathrm{~m}$ Total $=4300 \mathrm{~m}$	M1 A1 [2]	A to $G=4200$ (may be implied from working or from answer) 4300 , condone 43 if arc weights used throughout this part, no follow through in this part (units may be implied)
For reference:				

Question			Answer	Marks	Guidance
5	(i)	(a)	G H F E B C A D G Upper bound $=2000$ metres (or 2 km) $1+3+1+1+1+1+8+4=20$	M1 A1 B1 [3]	Starts G HFEBCA All correct and finishing at G (not ... $A C D G)$ Allow $G H, H F, \ldots, D G$ or similar, but written (not a diagram) 2000 (metres may be implied) or 2 km (with units) Condone 20 if arc weights seen Correct answer without wrong working, allow 'recovery' of 'return to G ' if route correct apart from G missing at end
5	(i)	(b)	$A D G H F E B C A$	B1 [1]	Using their answer to part (i) that uses all 8 vertices, or correct, start and end at A. Order may be reversed: $A C B E F H G D A$ Allow $A D, D G, \ldots, C A$ or other ways of presenting route
5	(ii)			B1 B1 B1 [3]	CHECK SPARE GRAPH and X whichever is not used Correct tree Arcs in correct order $A C, B C, B E, E F, D F, F H, G H$ 10 as total weight, condone 1000 m or 1 km if units are given, no follow through from an incorrect tree

Question			Answer	Marks	Guidance
5	(iii)	(a)	Remove $F H$ and $G H$ then reconnect G using $D G$ $10-3-1+4=10$	B1 [1]	10 as final answer, condone 1000 m or 1 km if units are given, correct or follow through from part (ii) Need not see working
5	(iii)	(b)	Reconnect H using $H F$ and $H G \quad 10+3+1=14$ Lower bound $=1400$ metres (or 1.4 km)	B1 [1]	1400 (metres may be implied) or 1.4 km (with units), condone 14 if using arc weights in (iii)(a) Strict follow through from part (iii)(a)
5	(iv)		$\begin{aligned} & \text { e.g. } A C B E F H G D C A \quad \text { Length }=1800 \text { metres } \\ & \text { or } A C B E F H G D F C A=1900 \\ & \text { or } A C B E F H G D F E B C A=1800 \\ & \text { or } A B E F H G D C A=1900 \\ & \text { or } A C B E F D G H F C A=1900 \\ & \text { etc. or any of these reversed } \end{aligned}$	M1 A1 [2]	A valid route (starts and ends at A, visits all other nodes at least once) and has length strictly between their 1400 , from (iii)(b), and their 2000, from (i)(a) Length of their route (metres may be implied), accept length in km if units are given, but not (their) 18 (unless stated that units are 100 m)
5	(v)		$18 x+8 y \leq 120 \quad$ (or a positive multiple of this inequality) [coefficient of x comes from their length in (iv) $\div 100$] [coefficient of y must be 8 , this is the number of vertices]	M1 A1 [2]	$18 x+8 y$, follow through from part (iv) ≤ 120
5	(vi)		$7 x+5 y>40 \quad \text { (or a positive multiple of this inequality) }$ [coefficient of x is length of their route from A to $H \div 100$] [coefficient of y is the number of vertices on their route from A to H, including A but excluding H]	M1 A1 [2]	$7 x+5 y$, follow through from part (iv) as far as H $>40 \quad($ allow $\geq 40)$ ACBEFHGDCA gives $7 x+5 y$, reversed $=11 x+4 y$ $A C B E F H G D F C A$ gives $7 x+5 y$, reversed $=12 x+5 y$ $A C B E F H G D F E B C A$ gives $7 x+5 y$, reversed $=11 x+7 y$ $A B E F H G D C A$ gives $8 x+4 y$, reversed $=11 x+4 y$ $A C B E F D G H F C A$ gives $11 x+7 y$, reversed $=8 x+3 y$ etc.

Question		Answer	Marks	Guidance
6	(i)	$a=$ amount of amber lotion made, in litres $b=$ amount of bronze lotion made, in litres $c=$ amount of copper lotion made, in litres Amount of water required $=1 \times a+0.8 \times b+0.5 \times c$ litres Amount available $=40$ litres Hence, $a+0.8 b+0.5 c \leq 40 \Rightarrow 10 a+8 b+5 c \leq 400$ (given)	B1 B1 [2]	Associating a, b, c with litres of amber, bronze and copper, respectively Need to see 'litres', 'amber', 'bronze' and 'copper' used appropriately in defining variables a, b and c Not 100 ml Sight of $a+0.8 b+0.5 c$ and 40 Not just ' $1 \times 10,0.8 \times 10,0.5 \times 10,40 \times 10$ ' Note: $10 a+8 b+5 c \leq 400$ on its own gets B0
6	(ii)	$0.2 b+0.5 c \leq 7 \Rightarrow 2 b+5 c \leq 70$	B1 [1]	$2 b+5 c \leq 70$, or any positive multiple of this, including decimals
6	(iii)	$\begin{aligned} & 2 a+4 b+c \leq 176 \\ & 5 a+b+3 c \leq 80 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	Allow any positive multiple of this, including decimals Allow any positive multiple of this, including decimals Must have inequalities, without slack variables
6	(iv)	£8	B1 [1]	Correct answer only (with units: $£ 8,8$ pounds, 800 pence, 800 p) $£ 8$ for A (may also see $£ 7$ for B, $£ 4$ for C) but not just $£(8 a+7 b+4 c)$ or similar

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

